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Introduction
Few modern degenerative illnesses incite as much fear as Alzheimer’s disease (AD). It is difficult 
when one’s physical body loses the strength and mobility afforded in youth, but cognitive 
decline – memory loss, deterioration of cognition, and disturbing behavioural changes – incites 
even greater concern, as individuals speculate about how they will be affected, personally, and 
what the ramifications will be of becoming a burden on their families.

Too often, newly diagnosed patients are told that AD is a mystery, and that they are powerless 
to slow or stop its course: the biochemical and physiological mechanisms behind the pathology 
and progression of this condition remain elusive, and, as a result, there are currently no effective 
treatment protocols. Patients and their families are provided few recommendations beyond 
getting their finances and personal affairs in order in preparation for the inevitable decline. 
Pharmaceutical drugs developed to date have been ineffective, as they typically aim to treat 
symptoms, rather than targeting and correcting the underlying causes. In fact, some pharmaceutical 
agents designed to target biochemical pathways tentatively implicated in disease pathogenesis 
and progression have actually worsened disease progression.1 This symptom-oriented approach 
has failed patients and their caregivers for too long. It is time to reorient AD research, treatment 
and potential prevention strategies towards what a large and continually growing body of 
scientific evidence suggests is the main underlying disturbance in the Alzheimer’s brain: the 
deterioration and death of hippocampal neurons subsequent to their loss of capacity to harness 
energy from glucose.

Economic costs associated with Alzheimer’s disease and other forms of dementia are staggering. 
In the United States alone, the financial toll of these conditions was $225 billion in 2015, with 
projections for this figure to exceed a trillion dollars by 2050.2 This enormous economic tally 
includes government healthcare spending as well as increased costs incurred by individual 
families, among whom people may need to abandon their professions to assume full-time 
caregiving roles for afflicted loved ones, and who incur increased healthcare costs of their own – 
approaching $10 billion – because of the physical and psychological tolls caregiving exacts. 

Significant epidemiological and clinical evidence has emerged that suggests Alzheimer’s 
disease (AD) can be added to the list of chronic illnesses that are primarily caused by modern 
diets and lifestyles at odds with human physiology. High intakes of refined carbohydrates, 
insufficient physical activity, suboptimal sleep quantity and quality, and other factors that may 
contribute to insulin resistance combine to create a perfect storm of glycation and oxidative 
stress in the brain. Specific neurons lose the ability to metabolise and harness energy from 
glucose, ultimately resulting in neuronal degeneration and death. Simultaneously, chronic 
peripheral hyperinsulinaemia prevents ketogenesis, thus depriving struggling neurons of a 
highly efficient alternative fuel substrate. The intimate association between type 2 diabetes 
and AD suggests that they have common underlying causes, namely insulin resistance and 
perturbed glucose metabolism. Preclinical evidence of AD is detectable decades before overt 
symptoms appear, indicating that AD progresses over time, with observable signs manifesting 
only after the brain’s compensatory mechanisms have failed and widespread neuronal atrophy 
begins to interfere with cognition and performance of daily life tasks. That dietary and 
environmental triggers play pivotal roles in causing AD suggests that nutrition and lifestyle-
based interventions may hold the key to ameliorating or preventing this debilitating condition 
for which conventional pharmaceutical treatments are largely ineffective. Results from small-
scale clinical studies indicate that dietary and lifestyle strategies may be effective for reversing 
dementia and cognitive impairment. Increased research efforts should be dedicated towards 
this promising avenue in the future.
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Approximately 5.3 million Americans are living with AD, 
with this number predicted to reach 7.1 million by 2025, 
and  a staggering 13.8 million by 2050. Alzheimer’s is the 
sixth leading cause of death in the United States, and while 
deaths due to other leading causes of mortality – such as 
heart disease and some forms of cancer – have decreased in 
recent years, deaths attributed to AD have increased by 71% 
since 2000.

According to the Alzheimer’s Association, ‘Alzheimer’s is 
the only disease among the top 10 causes of death in America 
that cannot be prevented, cured or even slowed’.2 Owing to 
the lack of effective treatments for this illness, a diagnosis 
of  AD amounts to a death sentence. The financial burden 
affected families face is compounded by the helplessness and 
hopelessness that accompany such a diagnosis. However, 
viewing Alzheimer’s disease as a metabolic disturbance, 
with a relatively clear aetiology and pathophysiology, 
suggests that there may be effective ways to prevent, delay 
and possibly reverse the progression of this dreaded disease. 
The scientific literature is replete with research referring 
to Alzheimer’s disease as ‘diabetes of the brain’, or ‘type 3 
diabetes’.3,4,5 There are profound connections between 
insulin  resistance, hyperinsulinaemia and AD, as well as 
other forms of cognitive decline, such as mild cognitive 
impairment, the precursor to AD).6,7,8,9,10,11,12,13,14 In fact, 
chronic hyperinsulinaemia is one of the primary risk factors 
for development of AD.15,16

Alzheimer’s disease as a 
metabolic condition
Considering the strong links between hyperinsulinaemia/
insulin resistance (IR) and development of Alzheimer’s 
disease, it is not surprising that type 2 diabetes (T2D) is a 
significant risk factor for AD. However, a diagnosis of T2D is 
not required for eventual progression to AD, because T2D 
does not cause AD. Rather, they may be thought of as 
‘physiological cousins’ – conditions that result from the same 
underlying metabolic disturbances, but which have different 
outward manifestations in the body. One may be a diagnosed 
T2 diabetic and not develop AD, and many AD patients are 
not diagnosed diabetics.

Diagnosis of T2D is prompted by abnormalities in blood 
glucose measurements – elevated fasting blood glucose 
(FBG), elevated haemoglobin A1c (HgbA1c), and an abnormal 
response to an oral glucose tolerance test (OGTT). 
Measurements of glycaemic control, however, fail to account 
for what is potentially a much more powerful and more 
insidious factor in the development of Alzheimer’s disease: 
chronically elevated insulin. An array of OGTTs performed 
by Dr J. Kraft and colleagues – which were extended to 
5-hours from the traditional 2-hours and also included 
insulin assays – indicated that several thousand individuals 
with normal measurements of glycaemic control were 
hyperinsulinaemic.17,18 The addition of insulin testing to the 
OGTT revealed IR and hyperinsulinaemia among patients 

whose glucose dynamics would have shown them –  
falsely – to be metabolically healthy. And it is dysregulated 
insulin – specifically, hyperinsulinaemia/IR – rather than 
hyperglycaemia, that evidence indicates a causal role for in 
the pathology and progression of AD. Therefore, it cannot be 
assumed that individuals with normal blood glucose markers 
are not at risk for conditions related to metabolic derangement. 
In fact, the correlations between peripheral and brain insulin 
resistance, metabolic syndrome, and Alzheimer’s disease 
are  so profound that researchers have coined the phrase 
‘metabolic-cognitive syndrome’ to underscore their common 
physiologic origins.19,20,21,22

Clinically, Alzheimer’s patients present with decreased 
cognitive function and lapses in memory that decline 
progressively and ultimately impact performance of 
everyday life tasks. Physiologically, AD is characterised 
by  several physical hallmarks that can be measured or 
observed via biopsy, positron emission tomography (PET) 
scan, or upon autopsy. These include insoluble extracellular 
plaques made of beta-amyloid peptide (Aβ); intracellular 
neurofibrillary tangles (NFTs), loss of hippocampal neurons; 
and a marked decline in the metabolism of glucose in regions 
of the brain associated with memory and learning. All of 
these changes can be logically explained as sequelae resulting 
from long-term dysregulation of insulin signalling and 
glucose energetics.

Reduced cerebral glucose 
metabolism
There is a significant link between Alzheimer’s 
disease  and  impaired fuel metabolism in the brain, with 
disturbed cerebral glucose metabolism being an invariant 
pathophysiological feature of AD.23 The defining metabolic 
signature of AD is a decrease in the cerebral metabolic rate 
of  glucose (CMRglu). This may be the primary underlying 
cause of neuronal degeneration and death: at its heart, AD 
is  an energy crisis in the brain. It is the death of neurons 
via  starvation, as they have lost the capacity to effectively 
harvest energy from glucose. Before overt cell death, however, 
affected neurons may degrade axons and dendrites in order 
to conserve energy for the purpose of protecting the viability 
of the cell body. The retraction of these projections results in 
compromised synapses and loss of communication between 
neurons, which may manifest as memory loss, behavioural 
abnormalities, and the other observable signs of mild 
cognitive impairment and AD.24 Some researchers have 
stated that the ‘primary pathophysiological mechanism in 
the early stage of AD is synaptic dysfunction […] based on 
impairment of glucose degradation’.25

Reductions in CMRglu are observable via PET scan in 
individuals with genetic risk factors for AD as early as in 
their 30s. Compared to healthy, age-matched individuals, 
subjects aged 20–39 with a known genetic factor predisposing 
for Alzheimer’s disease (possession of the ε4 allele for 
the  ApoE gene, discussed in a subsequent section) had 
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abnormally low CMRglu in the posterior cingulate region, 
parietal and temporal regions, and prefrontal cortex – 
approximately 8.0% – 10.5% lower than in subjects without 
the increased genetic susceptibility.26,27 It is important to note 
that these subjects were cognitively normal; they showed no 
signs or symptoms of impaired cognitive function, despite 
measurements showing an already present reduction in 
glucose metabolism in brain regions associated with memory 
processing and learning. Brain glucose hypometabolism 
may be the earliest step in the pathology of AD – a kind of 
metabolic ‘canary in the coalmine’ that sets the stage for 
cognitive decline decades before overt signs and symptoms 
begin to appear.

There is no doubt that the severity of perturbed glucose 
metabolism in the brain predicts future cognitive decline 
and  eventual development of full-blown AD, with disease 
severity likely influenced by the extent of the reduction in 
CMRglu. The greater the reduction in an individual’s 
CMRglu compared to age-matched individuals with normal 
cerebral glucose metabolism, the greater their risk for 
cognitive decline in the form of mild cognitive impairment or 
Alzheimer’s disease, and the more rapidly such outcomes 
may occur. A longitudinal study using PET scans to measure 
CMRglu in subjects aged 50–8028 showed that those with the 
lowest hippocampal CMRglu at baseline experienced the 
most rapid development of overt AD. At baseline testing, 
hippocampal glucose metabolism in subjects who progressed 
from normal cognition to mild cognitive impairment was 
15% below that of subjects who did not develop cognitive 
decline, with this already reduced rate of cerebral glucose 
metabolism declining further by 2.4% annually. The data are 
even more telling for subjects who progressed from normal 
cognition to full-blown Alzheimer’s disease: among these 
individuals, CMRglu at baseline was 26% below that of 
people who did not develop AD, and starting with that 26% 
reduction, the additional annual rate of decline in cerebral 
glucose metabolism was 4.4%. These reductions in cerebral 
glucose metabolism are in stark contrast to the mere 0.8% 
annual rate of decline in CMRglu among subjects who had 
normal CMRglu at baseline and did not develop AD. 
Extrapolating backward indicates that a decline in the rate of 
cerebral glucose metabolism may start as early as 20 years 
before overt signs of impaired cognition become observable 
in afflicted individuals. Again, at baseline, despite an already 
decreased CMRglu in some subjects, all subjects were 
cognitively normal. This suggests that a starting point of 
reduced glucose utilisation in the brain and a stronger rate 
of continued decline might be one of the earliest triggering 
events in Alzheimer’s disease.29 Compared to healthy 
controls, AD patients show up to 45% reductions in CMRglu 
via PET scan, with one study’s authors claiming that this is 
‘the predominant abnormality’ in AD.25 Because the reduction 
in CMRglu begins many years before an individual receives 
a diagnosis of Alzheimer’s disease or mild cognitive 
impairment, and during this time the individual may either 
self-assess or be described by others as having healthy 
cognition (perhaps with occasional episodes of odd behaviour 

or forgetfulness that are considered ‘normal’), it may be that 
the brain is able to compensate for the reduced cerebral 
glucose usage until such reduction has progressed to a point 
that is insurmountable.

Peripheral hyperinsulinaemia, 
insulin in the brain, and beta-
amyloid plaques
It was believed for some time that insulin played little role in 
glucose metabolism in the brain, as the common brain 
glucose transporters – GLUT1 and GLUT3 – are noninsulin-
sensitive. However, it is now established that there are both 
insulin receptors and insulin-sensitive glucose transporters 
(GLUT4s) at and beyond the blood-brain barrier, and they are 
particularly abundant in brain regions involved in learning 
and memory, such as the hippocampus.30,31 It has yet to be 
elucidated for certain whether all insulin in the brain and 
central nervous system (CNS) is of peripheral origin or if 
the  CNS synthesises at least some of its own insulin. It is 
certain, however, that brain insulin dynamics play a role in 
neurotransmission, cognition, and the regulation of hormones 
that control feeding behaviour and reproductive function.32

A noteworthy feature of AD is the combination of 
hyperinsulinism in the periphery with hypoinsulinism in 
the  CNS. Patients with advanced AD show higher plasma 
but lower cerebrospinal fluid (CSF) insulin concentrations 
than healthy controls and subjects with mild cognitive 
impairment. Moreover, the ratio of CSF to plasma insulin 
levels was significantly lower in patients with advanced 
dementia, with the degree of difference correlating to 
dementia severity.33 These compartmentalised alterations 
in  insulin concentration were observed in individuals who 
lacked the strongest currently known genetic risk factor for 
development of AD: homozygosity for the ε-4 allele of the 
apolipoprotein E gene (ApoE4). This suggests again that 
peripheral hyperinsulinaemia/IR is a significant risk factor 
for AD regardless of genotype.34 Improper cellular responses 
to insulin may be responsible for the decline in CMRglu, as 
well as the rampant glycation observed in post-mortem 
examinations of AD brains. Neurons that are unable to take 
up glucose would show a decline in the metabolism of this 
fuel substrate, and as glucose accumulates in the extracellular 
space and/or its early metabolites build up intracellularly, 
it  would form advanced glycation end-products (AGEs), 
which would further impair proper synaptic transmission 
and neuronal communication. Similar to a reduction in the 
CMRglu, AGE accumulation is a byproduct of normal, 
healthy aging. However, as with the decline in glucose 
utilisation, AGE formation occurs more quickly and to a 
greater degree in AD patients than in healthy individuals. 
AD brains show more AGEs than those of healthy, age-
matched controls, and this glycation contributes to otherwise 
soluble amyloid proteins becoming insoluble.35

Perturbed peripheral and central insulin dynamics likely 
underlie the second most well-recognised feature of 
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Alzheimer’s disease, after the reduced CMRglu: the 
extracellular accumulation of insoluble plaques consisting of 
beta-amyloid peptide. Aβ results from the normal cleavage 
of  the amyloid precursor protein, but its accumulation and 
aggregation into plaques represents one of the quintessential 
features of AD.36 Aβ is detectable in healthy human brains, 
but  its concentration is orders of magnitude larger in 
Alzheimer’s-affected brains.37 This is noteworthy because 
lower concentrations of Aβ tend to remain soluble and subject 
to degradation and clearance, while higher concentrations 
more readily aggregate into degradation-resistant insoluble 
plaques.38 Post-mortem sections from the brains of AD patients 
homozygous for ApoE4 have been shown to be so extensively 
riddled with Aβ plaques that they can be distinguished from 
those of other AD patients without a microscope.39

The synthesis and secretion of amyloid precursor proteins are 
normal physiological processes. The formation of the insoluble 
plaques is what distinguishes an Alzheimer’s brain from a 
healthy brain. However, there is no evidence that Alzheimer’s 
patients secrete more Aβ than healthy individuals; rather, in 
AD patients, these proteins are not properly degraded and 
cleared away. The enzyme responsible for degrading amyloid 
proteins in the brain is insulysin, also  known as insulin 
degrading enzyme (IDE) – the same enzyme tasked with 
degrading insulin (as well as glucagon,  atrial natriuretic 
peptide, and more). Peripheral hyperinsulinaemia – as seen 
in  T2D, metabolic syndrome and other hyperinsulinaemic 
conditions associated with greater risk for AD – may induce a 
functional deficiency of IDE.40 The affinity of IDE for insulin is 
much greater than that for Aβ, such that the presence of even 
small amounts of insulin completely inhibits the degradation 
of Aβ.38,40 Thus, when IDE is saturated with insulin as a 
substrate, Aβ is left to accumulate and form plaques.

Modern diets, high in evolutionarily novel refined, acellular 
carbohydrates, may be a contributing factor to the 
development of insulin resistance and, almost certainly, 
Alzheimer’s disease.41,42,43 Additionally, inadequate sleep – 
whether in quantity or quality – is another way in which the 
modern lifestyle may spur the progression of AD. Short sleep 
duration is associated with perturbations in insulin signalling 
and glucose metabolism such that insufficient sleep is now 
recognised as a risk factor for metabolic syndrome and type 2 
diabetes.44,45,46 Alzheimer’s patients often have disrupted 
circadian patterns. This may be a downstream effect of the 
condition, but it also likely precedes diagnosis and may be a 
contributing factor in the causative cascade for AD.47 Human 
and animal studies indicate that Aβ exhibits a diurnal pattern: 
concentration rises during wakefulness and falls during 
sleep.48 The clearance of Aβ is most active during sleep: PET 
scans of older adults show that, compared to those who report 
good sleep quality and quantity, those with self-reported poor 
sleep quality and short sleep duration have greater Aβ burden 
and tau hyperphosphorylation (another physiological 
hallmark of AD), as do individuals with obstructive sleep 
apnea, compared to healthy controls.49,50 Researchers have yet 
to unravel the precise reasons underlying the invariant and 

absolute necessity for sleep across all observed animal species, 
but it seems that one of the crucial processes that occur during 
sleep is the clearance of neurotoxic metabolic wastes from the 
brain, including Aβ.51 Thus, disrupted sleep represents a 
double assault upon brain health: elevated insulin levels may 
result in decreased activity of IDE for clearing Aβ, and shorter 
sleep duration may limit the amount of time during which Aβ 
is most effectively cleared from the CNS.

A great deal of Alzheimer’s disease research has focused on 
Aβ plaques and their role in potentiating the development of 
the condition. While it is true that glycated Aβ plaques 
interfere with neurotransmission and may also be directly 
neurotoxic, pharmaceutical interventions targeting the 
synthesis of these plaques have failed to have a positive 
impact upon disease progression. One such agent was a 
γ-secretase inhibitor, intended to reduce activity of the 
enzyme that cleaves Aβ from the amyloid precursor protein. 
Such an inhibitor would decrease production of Aβ, thereby 
limiting what is often considered a primary causative agent 
in AD. However, phase III clinical trials had to be halted 
because results were so striking against this treatment. 
Measures of cognition and ability to complete daily tasks for 
living were significantly worse for patients receiving the 
drug than the placebo.1

Viewing AD as a metabolic disorder, the accumulation of Aβ 
plaques may be seen as an effect, rather than a cause, of the 
condition. However, just as a fever (initially a protective 
mechanism of the immune system) spiking too high may 
create problems of its own, growing numbers of Aβ plaques 
and their increasing density in a hyperglycaemic environment 
can initiate chain reactions of glycation and oxidation that 
serve to exacerbate impairment of neuronal fuel metabolism 
and cerebral ATP production, and precipitate cognitive 
decline. Nevertheless, targeting Aβ plaques is a superficial 
approach that fails to address the root cause of cognitive 
decline: peripheral and brain insulin resistance and the 
resulting reduction in the brain’s capacity to harness energy 
from glucose. It is unlikely that Aβ plaques are an initial 
causal factor in AD. They more logically result from glycation 
and functional inhibition of IDE due to peripheral 
hyperinsulinaemia. Moreover, effects of reduced glucose 
metabolism in the brain are observed long before evidence of 
plaque formation; in many cases, the latter occurs only 
relatively late in disease progression. This is not to suggest 
that the accumulation of glycated Aβ plaques is not 
problematic; only that it is unlikely to be a primary causative 
agent in AD. A growing body of evidence suggests that focus 
on amyloid plaques as primary drivers of Alzheimer’s 
pathogenesis distracts from other factors that align more 
strongly with multiple aspects of the aetiology and progression 
of the condition, such as metabolic abnormalities.52,53

The role of ApoE4 genotype
Finally, it is crucial to address the strongest and, to date, only 
known genetic risk factor for Alzheimer’s disease: possession 
of one or two ε4 (E4) alleles of the APOE gene (ApoE4). 
Possession of an ε4 allele is so strongly correlated with AD that 
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it has been called the ‘susceptibility gene’.27 Heterozygotes for 
ApoE4 have a fivefold increased risk of developing AD, while 
homozygotes are estimated to have a staggering lifetime risk 
between 50% and 90%.54 Despite this threatening genetic 
heritage, the ApoE4 allele is neither required nor sufficient 
for  development of AD: 50% of people with AD are  not E4 
carriers, and many E4 homozygotes never develop the disease. 
Chronic hyperinsulinaemia/insulin resistance elevates risk 
independently of ApoE status, with a 43% increased risk for 
AD from hyperinsulinism alone, regardless of genotype. 
Among insulin-resistant individuals who were not diagnosed 
diabetics (normoglycaemic due to hyperinsulinaemia), the 
risk for AD was double that of those without IR.15 As 
hyperinsulinaemia occurs in approximately 40% of people 
over age 60, it is not surprising to find a correlation between IR 
and a condition that preferentially strikes the aging.55

Although there are strong correlations between the ApoE4 
genotype and AD, the majority of AD patients are not 
ApoE4  carriers. One potential aggravating factor for the 
ApoE4 genotype is that ApoE4 homozygotes produce 50% less 
hippocampal IDE compared to healthy controls, as well as AD 
patients who are not carriers of the ε4 allele.36 Thus, these 
individuals may have reduced capacity to degrade Aβ peptides 
relative to other genotypes, which would explain, in part, the 
severity of AD observed in ApoE4 carriers. However, it has not 
been determined whether the ApoE4 gene causes reduced IDE 
synthesis. The ApoE4 gene and reduced IDE expression could 
both presumably be the result of an overall hunter-gatherer 
genotype poorly suited for the modern diet’s evolutionarily 
discordant amount of refined carbohydrates.41,42,43,56

The distribution of the various ApoE gene isoforms is 
theorised to stem from human evolutionary migration 
patterns and the adoption of grain-based agriculture.57 
Groups with the longest exposure to grain consumption have 
a lower E4 frequency suggesting that higher carbohydrate 
intakes may have selected against E4.41 The single amino acid 
substitutions that differentiate the three ApoE isoforms affect 
tendency for apolipoproteins to become glycated, as well 
as  determine binding affinity to any number of enzymes 
and receptors, which is why the isoforms are associated with 
different trends in serum low-density lipoprotein (LDL), 
very  low–density lipoprotein (VLDL) and triglyceride 
measurements, with ApoE4 being associated with 
hypertriglyceridaemia and elevated LDL – common findings 
in metabolic syndrome and insulin resistance.56,57,58 Pre-
agriculturalists presumably would have derived more of 
their calories from fat, protein and high-fibre, lower-starch, 
vegetable-based carbohydrates as opposed to grains and 
acellular carbohydrates, and may therefore have had a lower 
requirement for both insulin and IDE.41,43,59,60

A new direction for therapeutic 
intervention and treatment 
strategies
The profound disturbances in glucose and insulin signalling 
that underlie Alzheimer’s disease, coupled with the failure of 

pharmaceutical strategies aimed at reducing or preventing 
synthesis of Aβ plaques to slow disease progression, suggests 
that the prevailing view of AD as a problem localised to 
the  brain is myopic and self-limiting. Viewing AD instead 
as  a metabolic abnormality – one involving systemic 
hyperinsulinaemia and insulin resistance affecting brain fuel 
metabolism, inflammation, glycation, and ultimately 
compromising neuronal energy generation – opens a vast 
array of promising therapeutic avenues.61,62,63 Rather than 
attempting to treat AD by attacking the symptoms piecemeal, 
dietary and lifestyle interventions aimed at addressing the 
fundamental root causes of physiological derailment may 
prove more effective. Moreover, strategies that help correct 
the underlying pathology may hold the key to not only 
delaying and possibly reversing AD and milder forms of 
cognitive decline, but perhaps, to preventing them altogether.

Clinical interventions employing this type of multipronged 
diet and lifestyle strategy have already yielded promising 
results. Among a small cohort of ten subjects with diagnosed 
Alzheimer’s disease and mild cognitive impairment or 
subjective cognitive impairment, six had experienced 
cognitive decline severe enough to interfere with or require 
them to abandon their professions.64 After an intervention 
involving dietary carbohydrate reduction (via low-glycaemic 
or low-grain diets), micronutrient repletion, a daily 12-hour 
fast, increased sleep and physical exercise, supplementation 
with omega-3 fatty acids, antioxidants, and medium-chain 
triglycerides (the latter to serve as a source of ketones to fuel 
the brain), plus additional hormone optimisation and stress 
management techniques, all six experienced improvements 
significant enough for them to return to work, and all study 
subjects except one (with very advanced Alzheimer’s at 
baseline) not only maintained their better cognition through 
at least 2.5 years of follow-up, but some had continual and 
marked improvement, as opposed to the inevitable decline 
such patients would typically expect to experience. The 
collective effects of these individual interventions likely 
resulted in reduced inflammation, glycation, and oxidative 
stress, increased mitochondrial biogenesis and brain-derived 
neurotrophic factor, elevated plasma ketones, and increased 
insulin sensitivity.65,66,67,68,69

The reduced presence of insulin in the CNS of Alzheimer’s 
patients might lead one to speculate that exogenous insulin 
administration would be beneficial. Indeed, intranasal 
infusions of insulin have been shown to improve cognition 
in  the short term in memory-impaired adults, but results 
were inconsistent across genotypes, with ApoE4 carriers 
experiencing decline in verbal memory.70,71 A short-term 
benefit may well be valuable, but ultimately, CNS insulin 
infusion fails to address the underlying systemic disturbances, 
which, if left unaddressed, will lead to further deterioration 
of cognitive function. A similar approach that may be 
beneficial for the short term, but which ultimately allows AD 
to progress unabated, is administration of exogenous ketones, 
in the form of ketone salts or esters.72 Ketone bodies can 
provide upwards of 40% – 60% of energy for the brain during 
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times of reduced glucose availability,73,74 and unlike glucose 
metabolism, cerebral uptake and utilisation of ketones is not 
impaired in mild-to-moderate Alzheimer’s disease.75 These 
alternative fuel substrates have proven impressive in the 
acute clinical setting, with many patients exhibiting rapid 
and noticeable improvement in cognition, but again, ApoE4 
carriers generally do not respond as well as non-carriers, and 
in some cases, do not respond at all.76,77,78

A strong body of evidence supports the use of very low 
carbohydrate or ketogenic diets to improve type 2 diabetes, 
insulin sensitivity and multiple features of metabolic 
syndrome.79,80,81,82,83 Being that this type of nutritional strategy 
may reduce systemic insulin loads, improve glucose 
metabolism and allow for sustained levels of at least mild-to-
moderate ketonaemia, this may prove more effective than 
providing central insulin infusions or artificially elevating 
blood ketones without actively implementing measures to 
correct the root physiological disturbances at the heart of 
Alzheimer’s disease. Indeed, nutritional ketosis (ketosis 
induced through dietary carbohydrate restriction) and 
increased dietary medium-chain triglycerides (typically in the 
form of coconut oil or isolated MCT oils, which are rapidly 
metabolised into ketones) have been shown to have beneficial 
effects in subjects with Alzheimer’s and mild cognitive 
impairment.55,75,84 Such studies are limited but positive findings 
for patient outcomes are promising and should spur additional 
research interest, particularly in light of the disappointing 
results of pharmaceutical interventions to date. A multifaceted 
approach addressing dietary and lifestyle interventions 
known to have beneficial effects on insulin resistance, whole-
body metabolism and fuel partitioning – particularly if 
implemented at the very earliest signs of impaired cognition, 
considering that systemic insulin resistance and the reduced 
cerebral use of glucose may precede the manifestation of overt 
signs and symptoms of cognitive decline by decades – may be 
the key to chipping away at Alzheimer’s disease, which has 
proven to be an otherwise insurmountable obstacle. Future 
research endeavours may prove more fruitful if academic 
interest, clinical efforts and the required financial resources 
are channelled towards these highly promising therapeutic 
avenues.
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